a2 United States Patent

Fink et al.

US012159173B2

US 12,159,173 B2
*Dec. 3, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

METHODS AND SYSTEMS FOR MULTIPLE
ACCESS TO A SINGLE HARDWARE DATA
STREAM

Applicant: West Texas Technology Partners,

LLC, Washington, DC (US)
Inventors: Ryan Fink, Vancouver, WA (US); Ryan
Phelps, Portland, OR (US); Gary Peck,
Portland, OR (US); Bryan Ransil, San
Francisco, CA (US)

Assignee: West Texas Technology Partners,

LLC, Washington, DC (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 18/365,701

Filed: Aug. 4, 2023

Prior Publication Data

US 2024/0211326 Al Jun. 27, 2024

Related U.S. Application Data

Continuation of application No. 17/498,291, filed on
Oct. 11, 2021, now Pat. No. 11,720,423, which is a

(Continued)
Int. CL.
GO6F 3/00 (2006.01)
GO6F 9/54 (2006.01)
(Continued)

543(}\

(52) US. CL

CPC GO6F 9/545 (2013.01); GO6F 9/541
(2013.01); GOGF 9/4411 (2013.01); GO6F
9744505 (2013.01); GOGF 9/544 (2013.01)

Field of Classification Search

CPC e GOG6F 9/54

See application file for complete search history.

(58)

(56) References Cited
U.S. PATENT DOCUMENTS
6,411,302 B1* 6/2002 Chiraz G09G 5/024
345/545
6,677,979 Bl 1/2004 Westfield

(Continued)

OTHER PUBLICATIONS

Fabien Coelho, API Compilation for Image Hardware Accelerators.
(Year: 2013).*

(Continued)

Primary Examiner — Lechi Truong
(74) Attorney, Agent, or Firm — Cadwalader, Wickersham
& Taft LLP

(57) ABSTRACT

Methods for providing simultaneous access to a hardware
data stream to multiple applications are disclosed. The first
application to access a hardware device is responsible for
providing and publishing an application programming inter-
face (API) that provides access to the hardware device’s data
stream, which other applications can then call to gain access
to the data stream. In some examples, the first application
may be a server process or daemon dedicated to managing
the hardware device data stream and publishing the API. In
some further examples, the first application may instead may
carry out user functionality unrelated to managing the hard-
ware device.

15 Claims, 5 Drawing Sheets

COMPUTER

stod—~{]

~520

US 12,159,173 B2

Page 2
Related U.S. Application Data 2011/0242317 Al 10/2011 Wengrovitz
. . L 2011/0249073 A1* 10/2011 Cranfill HO4AM 1/72469

continuation of application No. 16/393,436, filed on 348/14.02

Apr. 24, 2019, now Pat. No. 11,157,335, which is a 2011/0289506 Al 11/2011 Trivi

continuation of application No. 14/789,797, filed on %8%; 8%2?228 ﬁ} 2; %8}% Eedoseye"a

una
Jul. 1, 2015, now Pat. No. 10,318,361 2013/0335443 AL* 12/2013 HAIDET ..coocrovrer..., GO9G 5/363
(60) Provisional application No. 62/020,321, filed on Jul.) 345/629
22014 2013/0339583 Al 12/2013 Shin
’ ’ 2014/0029916 Al 1/2014 Dhawan
2014/0104440 Al* 4/2014 Sampathkumaran
(51) Int. ClL GO6V 40/172
GOGEF 9/4401 (2018.01) 348/207.1
GOGE 9/445 (2018.01) 2014/0297799 Al* 10/2014 Gordon HO4N 21/2402
709/217
(56) References Cited 2018/0205870 A1 7/2018 Ikeda
2019/0090025 Al* 3/2019 Chesson HO4N 21/466
U.S. PATENT DOCUMENTS 2023/0153446 Al* 5/2023 England GO6F 21/604
726/27
6,728,221 Bl 4/2004 Shaffer 2023/0214819 Al* 7/2023 Tham G06Q 20/3674
6,738,822 B2 5/2004 Fukasawa 705/64
7,631,119 B2 12/2009 Moore 2023/0401274 Al* 12/2023 Denninghoff G06Q 30/0251
7,663,661 B2 2/2010 Vallone
8,296,442 B2* 10/2012 Keller HOAL 65/612
715/755 OTHER PUBLICATIONS
8,351,509 Bl 1/2013 Hurd
8,681,203 Bl 3/2014 Yin Gabor Szarnyas, IncQuery-D: A Distributed Incremental Model
g,ggg,gié g} . ggg}g PDacz_owski HOAM 3/54 Query Framework in the Cloud. (Year: 2010).*

277, ANIS oo g : : : -
0’801/350 B2* 1012017 Ferrantelli o AG1B 50077 AAbelardo Lopez-Lagunas, Compiler Manipulation of Stream Descrip
0.817,5390 Bl 11/2017 Jiang tors for Data Access Optln.nzatlon. (Year: 200.6). .

10313,737 B2* 6/2019 LeVy vcoooccovreeenn. HO4N 21/6125 Adam O anovan, Real Time Capture of Audio Images and Their
2002/0067412 Al 6/2002 Kawai Use With Video. (Year: 2007).
2005/0078195 Al 4/2005 Vanwagner Andrew D. Ferguson, Participatory Networking: an API for Appli-
2005/0198302 Al 9/2005 Ewanchuk cation Control of SDNs. (Year: 2013).
2006/0161960 Al 7/2006 Benoit Jun Kato, DejaVu: Integrated Support for Developing Interactive
2009/0154474 Al 6/2009 Arima Camera-Based Programs. (Year: 2012).
2010/0039962 Al 2/2010 Varesio Th Gloe. U 4 Artef: in PRNU-Based C Id
5010/0077441 Al 3/2010 Thomas [homas Gloe, Unexpecte efacts in -Based Camera Iden-
2011/0010770 Al 1/2011 Smith tification: a ‘Dresden Image Database’ Case-Study. (Year: 2012).
2011/0055765 A1* 3/2011 Neubrand HO4N 1/32122

713/400

* cited by examiner

US 12,159,173 B2

Sheet 1 of 5

Dec. 3, 2024

U.S. Patent

<

NI
NN el 30130 $30IA30 RAVSIe
AV1dSIa 1NdLNO 1NdNI EYAONGY
261 e NS0z Ry
/
X e X X >
\/
hmm_w/_m_\,_ IAHA w_/__.wazmw_,m JOV4HILNI
SIa agvH MHOMLIN vH
HSY 14 T19vAONTY -
oy
Ney2) N/l NGz) NGl
1INN
WOH HOSSIO0Hd
601
AHOWIN
INILSAS
~—/01 G0/
1INA BNILNINOD
-0/
®101

U.S.

200

\

US 12,159,173 B2

/‘234

MECHANICAL

: ACTUATORS

Patent Dec. 3, 2024 Sheet 2 of 5
(,»-24{) /“232
FORCE TOUCH
SENSING SENSING
DEVICES DEVICES
001
!,/*242 &/ -
IMAGE o B
SENSORS s
DEVICES H
044
MICRO-
PHONES
/‘QO?
292 223
DISPLAY OUTPUT PROCESSOR
UNIT > DEVICES <> UNIT
25 A
BATTERY
/“2«%?7
Vo 246
CONNECTION N L
jjiiizcammuwmﬁﬂﬁw
250 DEVICES
RADIO
RECEIVER

P

FIG.2

230

MOTION
SENSING
DEVICES

238

Sk

LOCATION

DEVICES

NSING

AAAAAAAAAAAAAAAAAAAAAA 207
TEVSTEM
IMEMORY
| 209

STORAGE

i PA\? ?f

o o
ROV Uit

—

RECEIVER

GPS

252

1

>

NETWORK
INTERFACE

U.S. Patent Dec. 3, 2024 Sheet 3 of 5 US 12,159,173 B2

30~

FIRST APPLICATION TAKES CONTROL OF HARDWARE DEVICE,

~31
E.G. CAMERA J

FIRST APPLICATION INITIALIZES HARDWARE DEVICE, AND | 45
BEGINS RECEIVING DATA STREAM FROM DEVICE

FIRST APPLICATION ADVERTISES APl MAKING IT AVAILABLE | a9
TO OTHER APPLICATIONS

v

SECOND APPLICATION ACCESSES THE HARDWARE DEVICE |04
VIA THE APHOFFERED BY THE FIRST APPLICATION

FIG.3A

SC?Q\

OPERATING | _gpo
SYSTEM

U.S. Patent Dec. 3, 2024 Sheet 4 of 5 US 12,159,173 B2

™~

OPERATING | _y0
SYSTEM

Vi
CONTROL |43
PROCESS

U.S. Patent Dec. 3, 2024 Sheet 5 of 5 US 12,159,173 B2

510-E

670~ | BUFFER

FIG.BA

610~ | BUFFER

[

i

i

'

i3

< b
620~ | BUFFER ~560
6204 | BUFFER }s60

FlG.6oB

US 12,159,173 B2

1
METHODS AND SYSTEMS FOR MULTIPLE
ACCESS TO A SINGLE HARDWARE DATA
STREAM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 17/498,291, filed Oct. 11, 2021, now U.S. Pat.
No. 11,720,423, which is a continuation of U.S. patent
application Ser. No. 16/393,436 filed Apr. 24, 2019, now
U.S. Pat. No. 11,157,335, which is a continuation of U.S.
patent application Ser. No. 14/789,797, filed Jul. 1, 2015,
now U.S. Pat. No. 10,318,361, which claims a benefit of
U.S. Provisional Application No. 62/020,321, filed Jul. 2,
2014. All of these applications are hereby incorporated by
reference in their entirety for all purposes.

BACKGROUND

The present disclosure relates generally to the manage-
ment of data streams generated by computer hardware. In
particular, methods and systems enabling the sharing of a
single hardware data stream with multiple consuming appli-
cations are described.

Modern mobile devices are commonly equipped with
hardware such as a camera that can be used by a variety of
applications capable of being executed by the mobile device,
so as to perform a variety of functions. For example,
applications exist that can take pictures and video captured
by the camera and manipulate them, edit them, insert them
into other media, and/or upload them to online services for
further distribution and usage. As the devices equipped with
cameras and their associated applications grow in sophisti-
cation, the ways in which video streams can be utilized
continues to broaden. The nascent field of wearable tech-
nology introduces the possibility for device control using
gestures, detected by the built-in camera and processed by
applications to accomplish a variety of tasks or commands
previously clumsily accomplished using historically com-
mon means of input, such as a keyboard, pointing device, or
voice control. The video feed from a wearable device, when
coupled with a display positioned within the wearer’s field
of vision, also presents the opportunity for providing an
augmented reality experience. Where the video stream coin-
cides with the wearer’s field of vision, an application can use
image recognition techniques on the data stream to detect
points of potential interest to the wearer, and provide noti-
fication of those points to the wearer by means of a display
overlay.

Known implementations of managing data streams from
hardware devices are not entirely satisfactory for the range
of applications in which they are employed. For example,
existing methods for managing the video stream from a
camera require that an application be given exclusive control
of the camera, effectively denying simultaneous access to
the camera’s data stream to any other applications that may
need it. This is problematic when it is desirable for two
applications that require the camera to be running simulta-
neously, such as in the foregoing example of one application
that recognizes and acts upon user gestures made within the
camera’s field of view, and a second that interprets the
camera stream and superimposes augmented reality cues on
a transparent screen disposed within the user’s field of view.
Without simultaneous access to the camera data stream to

20

25

40

45

50

55

2

both applications, it is impossible to present an augmented
reality overlay while providing gesture recognition at the
same time.

While this limitation could possibly be overcome using a
single, monolithic application that provides both gesture
recognition and the augmented reality overlay (as well as
any other functionality that conceivably could be simulta-
neously desired), practical limits to the wearable device
hardware platform must be recognized. A monolithic appli-
cation typically imposes a greater memory footprint which,
in the context of a wearable device or mobile platform that
often has relatively limited working memory capacity when
compared to a typical laptop or desktop computer, may
result in fewer additional applications being able to run
simultaneously. If separate processes for gesture recognition
and augmented reality can be utilized, one or more of the
applications can be unloaded when not needed (e.g. it may
be desirable to have gesture recognition continuously active,
but augmented reality overlays are only necessary at
selected times), thereby saving working memory for other
applications. Furthermore, a multiple process design is gen-
erally accepted as a more robust method of implementation
as compared to a monolithic design, as a series of smaller
modules are easier to debug, and any bugs that survive are
isolated to a relatively limited functionality process that can
be restarted.

Thus, there exists a need for methods of providing simul-
taneous access to a hardware data stream to multiple appli-
cations, improving upon and advancing the design of known
hardware data stream access and sharing methods. Examples
of new and useful methods for simultaneous hardware data
stream access relevant to the needs existing in the field are
discussed below.

SUMMARY

The present disclosure is directed to methods for provid-
ing simultaneous access to a hardware data stream to mul-
tiple applications. The first application to access a hardware
device is responsible for providing and publishing an appli-
cation programming interface (API) that provides access to
the hardware device’s data stream, which other applications
can then call to gain access to the data stream. In some
examples, the first application may be a server process or
daemon, possibly included and launched as part of the
operating system startup sequence, whose sole purpose is to
manage the hardware device data stream and publish the
API. In some further examples, the first application may not
be a server or daemon, but instead may carry out user
functionality unrelated to managing the hardware device,
such as a user application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic view of an example of a
programmable computing device.

FIG. 2 shows a schematic view of an example of a mobile
electronic device.

FIG. 3A is a flowchart of a first example of a method for
multiple access to a single hardware data stream.

FIG. 3B is a block diagram of an example system imple-
menting the method for multiple access to a single hardware
data stream depicted in FIG. 3A.

FIG. 4 is a block diagram of a second example system
implementing the method for multiple access to a single
hardware data stream depicted in FIG. 3A.

US 12,159,173 B2

3

FIG. 5 is a block diagram of a third example system
implementing the method for multiple access to a single
hardware data stream depicted in FIG. 3A.

FIG. 6A is a block diagram of an example system imple-
menting the method for multiple access to a single hardware
data stream depicted in FIG. 3A, showing a first possible
way in which data stream buffering may be handled.

FIG. 6B is another block diagram of an example system
implementing the method for multiple access to a single
hardware data stream depicted in FIG. 3A, showing a second
possible way in which data stream buffering may be
handled.

DETAILED DESCRIPTION

The disclosed methods and systems for multiple access to
a single hardware data stream will become better understood
through review of the following detailed description in
conjunction with the figures. The detailed description and
figures provide merely examples of the various inventions
described herein. Those skilled in the art will understand that
the disclosed examples may be varied, modified, and altered
without departing from the scope of the inventions described
herein Many variations are contemplated for different appli-
cations and design considerations; however, for the sake of
brevity, each and every contemplated variation is not indi-
vidually described in the following detailed description.

Throughout the following detailed description, examples
of various methods and systems for multiple access to a
single hardware data stream are provided. Related features
in the examples may be identical, similar, or dissimilar in
different examples. For the sake of brevity, related features
will not be redundantly explained in each example. Instead,
the use of related feature names will cue the reader that the
feature with a related feature name may be similar to the
related feature in an example explained previously. Features
specific to a given example will be described in that par-
ticular example. The reader should understand that a given
feature need not be the same or similar to the specific
portrayal of a related feature in any given figure or example.

Various disclosed examples may be implemented using
electronic circuitry configured to perform one or more
functions. For example, with some embodiments of the
invention, the disclosed examples may be implemented
using one or more application-specific integrated circuits
(ASICs). More typically, however, components of various
examples of the invention will be implemented using a
programmable computing device executing firmware or
software instructions, or by some combination of purpose-
specific electronic circuitry and firmware or software
instructions executing on a programmable computing
device.

Accordingly, FIG. 1 shows one illustrative example of a
computer, computer 101, which can be used to implement
various embodiments of the invention. Computer 101 may
be incorporated within a variety of consumer electronic
devices, such as personal media players, cellular phones,
smart phones, personal data assistants, global positioning
system devices, and the like.

As seen in this figure, computer 101 has a computing unit
103. Computing unit 103 typically includes a processing
unit 105 and a system memory 107. Processing unit 105 may
be any type of processing device for executing software
instructions, but will conventionally be a microprocessor
device. System memory 107 may include both a read-only
memory (ROM) 109 and a random access memory (RAM)
111. As will be appreciated by those of ordinary skill in the

10

15

20

25

30

35

40

45

50

55

60

65

4

art, both read-only memory (ROM) 109 and random access
memory (RAM) 111 may store software instructions to be
executed by processing unit 105.

Processing unit 105 and system memory 107 are con-
nected, either directly or indirectly, through a bus 113 or
alternate communication structure to one or more peripheral
devices. For example, processing unit 105 or system
memory 107 may be directly or indirectly connected to
additional memory storage, such as a hard disk drive 117, a
removable optical disk drive 119, a removable magnetic disk
drive 125, and a flash memory card 127. Processing unit 105
and system memory 107 also may be directly or indirectly
connected to one or more input devices 121 and one or more
output devices 123. Input devices 121 may include, for
example, a keyboard, touch screen, a remote control pad, a
pointing device (such as a mouse, touchpad, stylus, track-
ball, or joystick), a scanner, one or more motion sensors, a
position sensor such as a GPS receiver, a camera or a
microphone. Output devices 123 may include, for example,
a monitor display, an integrated display, television, printer,
stereo, or speakers.

Still further, computing unit 103 will be directly or
indirectly connected to one or more network interfaces 115
for communicating with a network. This type of network
interface 115 is also sometimes referred to as a network
adapter or network interface card (NIC). Network interface
115 translates data and control signals from computing unit
103 into network messages according to one or more com-
munication protocols, such as the Transmission Control
Protocol (TCP), the Internet Protocol (IP), and the User
Datagram Protocol (UDP). These protocols are well known
in the art, and thus will not be discussed here in more detail.
An interface 115 may employ any suitable connection agent
for connecting to a network, including, for example, a
wireless transceiver, a power line adapter, a modem, or an
Ethernet connection.

It should be appreciated that, in addition to the input,
output and storage peripheral devices specifically listed
above, the computing device may be connected to a variety
of other peripheral devices, including some that may per-
form input, output and storage functions, or some combi-
nation thereof. For example, the computer 101 may be
connected to a digital music player, such as an IPOD® brand
digital music player or i0OS or Android based smartphone. As
known in the art, this type of digital music player can serve
as both an output device for a computer (e.g., outputting
music from a sound file or pictures from an image file) and
a storage device.

In addition to a digital music player, computer 101 may be
connected to or otherwise include one or more other periph-
eral devices, such as a telephone. The telephone may be, for
example, a wireless “smart phone,” such as those featuring
the Android or i0S operating systems. As known in the art,
this type of telephone communicates through a wireless
network using radio frequency transmissions. In addition to
simple communication functionality, a “smart phone” may
also provide a user with one or more data management
functions, such as sending, receiving and viewing electronic
messages (e.g., electronic mail messages, SMS text mes-
sages, etc.), recording or playing back sound files, recording
or playing back image files (e.g., still picture or moving
video image files), viewing and editing files with text (e.g.,
Microsoft Word or Excel files, or Adobe Acrobat files), etc.
Because of the data management capability of this type of
telephone, a user may connect the telephone with computer
101 so that their maintained data may be synchronized.

US 12,159,173 B2

5

Of course, still other peripheral devices may be included
with or otherwise connected to a computer 101 of the type
illustrated in FIG. 1, as is well known in the art. In some
cases, a peripheral device may be permanently or semi-
permanently connected to computing unit 103. For example,
with many computers, computing unit 103, hard disk drive
117, removable optical disk drive 119 and a display are
semi-permanently encased in a single housing.

Still other peripheral devices may be removably con-
nected to computer 101, however. Computer 101 may
include, for example, one or more communication ports
through which a peripheral device can be connected to
computing unit 103 (either directly or indirectly through bus
113). These communication ports may thus include a parallel
bus port or a serial bus port, such as a serial bus port using
the Universal Serial Bus (USB) standard or the IEEE 1394
High Speed Serial Bus standard (e.g., a Firewire port).
Alternately or additionally, computer 101 may include a
wireless data “port,” such as a Bluetooth® interface, a Wi-Fi
interface, an infrared data port, or the like.

It should be appreciated that a computing device
employed according to the various examples of the inven-
tion may include more components than computer 101
illustrated in FIG. 1, fewer components than computer 101,
or a different combination of components than computer
101. Some implementations of the invention, for example,
may employ one or more computing devices that are
intended to have a very specific functionality, such as a
digital music player or server computer. These computing
devices may thus omit unnecessary peripherals, such as the
network interface 115, removable optical disk drive 119,
printers, scanners, external hard drives, etc. Some imple-
mentations of the invention may alternately or additionally
employ computing devices that are intended to be capable of
a wide variety of functions, such as a desktop or laptop
personal computer. These computing devices may have any
combination of peripheral devices or additional components
as desired.

In many examples, computers may define mobile elec-
tronic devices, such as smartphones, tablet computers, or
portable music players, often operating the 10S, Symbian,
Windows-based (including Windows Mobile and Windows
8), or Android operating systems.

With reference to FIG. 2, an exemplary mobile device,
mobile device 200, may include a processor unit 203 (e.g.,
CPU) configured to execute instructions and to carry out
operations associated with the mobile device. For example,
using instructions retrieved from memory, the controller
may control the reception and manipulation of input and
output data between components of the mobile device. The
controller can be implemented on a single chip, multiple
chips or multiple electrical components. For example, vari-
ous architectures can be used for the controller, including
dedicated or embedded processor, single purpose processor,
controller, ASIC, etc. By way of example, the controller may
include microprocessors, DSP, A/D converters, D/A con-
verters, compression, decompression, etc.

In most cases, the controller together with an operating
system operates to execute computer code and produce and
use data. The operating system may correspond to well-
known operating systems such as 10S, Symbian, Windows-
based (including Windows Mobile and Windows 8), or
Android operating systems, or alternatively to special pur-
pose operating system, such as those used for limited
purpose appliance-type devices. The operating system, other
computer code and data may reside within a system memory
207 that is operatively coupled to the controller. System

10

15

20

25

30

35

40

45

50

55

60

65

6

memory 207 generally provides a place to store computer
code and data that are used by the mobile device. By way of
example, system memory 207 may include read-only
memory (ROM) 209, random-access memory (RAM) 211,
etc. Further, system memory 207 may retrieve data from
storage units 294, which may include a hard disk drive, flash
memory, etc. In conjunction with system memory 207,
storage units 294 may include a removable storage device
such as an optical disc player that receives and plays DVDs,
or card slots for receiving mediums such as memory cards
(or memory sticks).

Mobile device 200 also includes input devices 221 that
are operatively coupled to processor unit 203. Input devices
221 are configured to transfer data from the outside world
into mobile device 200. As shown, input devices 221 may
correspond to both data entry mechanisms and data capture
mechanisms. In particular, input devices 221 may include
the following: touch sensing devices 232 such as touch
screens, touch pads and touch sensing surfaces; mechanical
actuators 234 such as button or wheels or hold switches;
motion sensing devices 236 such as accelerometers; location
detecting devices 238 such as global positioning satellite
receivers, WilFi based location detection functionality, or
cellular radio based location detection functionality; force
sensing devices such as force sensitive displays and hous-
ings, image sensors; cameras and microphones. Input
devices 221 may also include a clickable display actuator.

Mobile device 200 also includes various output devices
223 that are operatively coupled to processor unit 203.
Output devices 223 are configured to transfer data from
mobile device 200 to the outside world. Output devices 223
may include a display unit 292 such as an L.CD, speakers or
jacks, audio/tactile feedback devices, light indicators, and
the like.

Mobile device 200 also includes various communication
devices 246 that are operatively coupled to the controller.
Communication devices 246 may, for example, include both
an /O connection 247 that may be wired or wirelessly
connected to selected devices such as through IR, USB, or
Firewire protocols, a global positioning satellite receiver
248, and a radio receiver 250 which may be configured to
communicate over wireless phone and data connections.
Communication devices 246 may also include a network
interface 252 configured to communicate with a computer
network through various means which may include wireless
connectivity to a local wireless network, a wireless data
connection to a cellular data network, a wired connection to
a local or wide area computer network, or other suitable
means for transmitting data over a computer network.

Mobile device 200 also includes a battery 254 and pos-
sibly a charging system. Battery 254 may be charged
through a transformer and power cord or through a host
device or through a docking station. In the cases of the
docking station, the charging may be transmitted through
electrical ports or possibly through an inductance charging
means that does not require a physical electrical connection
to be made.

The various aspects, features, embodiments or implemen-
tations of the invention described above can be used alone
or in various combinations. The methods of this invention
can be implemented by software, hardware or a combination
ofhardware and software. The invention can also be embod-
ied as computer readable code on a computer readable
medium. The computer readable medium is any data storage
device that can store data which can thereafter be read by a
computer system, including both transfer and non-transfer
devices as defined above. Examples of the computer read-

US 12,159,173 B2

7

able medium include read-only memory, random access
memory, CD-ROMs, flash memory cards, DVDs, magnetic
tape, optical data storage devices, and carrier waves. The
computer readable medium can also be distributed over
network-coupled computer systems so that the computer
readable code is stored and executed in a distributed fashion.
It will be understood in this disclosure by a person skilled in
the relevant art that the terms “application” and “process”
may be used interchangeably, as both terms refer to a single
program as recognized by an operating system, which
includes its own memory space, stack, etc., as appropriate to
the system architecture. An application or process may have
multiple threads of execution, and can communicate with
other applications or processes via well-known interprocess
communication techniques, such as calls, message buffers,
files, sockets, or any other interprocess communication
facility provided by an operating system that is now known
or subsequently developed.

With reference to FIGS. 3A-B, a first example of a method
and implementing system for multiple access to a hardware
data stream, method 30 for multiple access to a camera data
stream will now be described. Method 30 functions to allow
two or more applications to simultaneously access and
utilize the data stream from a hardware device. In the
example implementation described herein, such a data
stream may come from a camera typical of those found on
mobile devices such as mobile phones, tablets, and wearable
computing devices like Google® Glass. Additionally or
alternatively, method 30 can be used to provide simultane-
ous access to a data stream from any hardware device that
otherwise would be exclusively available to only one appli-
cation at a time. Other possible sources include audio
reception devices such as microphone arrays, wireless
receivers such as WiFi or Bluetooth receiver modules,
motion sensors such as accelerometers, gyroscopes, mag-
netic compasses, and GPS receivers, or any other hardware
device that can provide a continuous data stream that may be
preferably subject to access by multiple applications. The
reader is referred to the foregoing discussion of mobile
device 200 and its associated peripherals for a more com-
plete list.

Method 30 thus addresses many of the shortcomings
existing with conventional methods of hardware data stream
access. For example, by enabling simultaneous access to a
camera, an application that processes the camera data stream
to present an augmented reality overlay can analyze the
camera feed and supply augmenting information while a
second application that processes the data stream and per-
forms gesture recognition is also enabled, and able to
provide responses to user gestures and associated applica-
tion control. The more robust software architecture of mul-
tiple independently-running processes can be readily imple-
mented, with its associated advantages of easier debugging
and crash isolation, as compared to a monolithic construc-
tion, with all possible functionality that may require use of
the data stream included in a single process.

In FIG. 3A, method 30 includes step 31, where a first
application takes control of a hardware device that outputs
a data stream, e.g. a camera. In step 32, the first application
initializes the hardware device, and begins receiving the
device data stream. In step 33, the first application estab-
lishes and advertises an application programming interface
(API), which is made available to other applications In step
34, a second application needing access to the same hard-
ware device accesses the device by interfacing with the API
presented by the first application.

20

25

40

45

8

As described in FIGS. 3A and 3B, step 31 is performed by
a first application, shown as first application 303 in FIG. 3B
In typical implementations, the system operating system
arbitrates application access to hardware. The application
thus receives control of the hardware device from the
operating system, if available Known operating systems
keep track of the application that currently has control of a
hardware device, and if the device is currently in use, will
notify a requesting application of the device unavailability
In an implementation of the present invention, by providing
and publishing a device access API, if the device is unavail-
able, the requesting application can learn the identity of the
application presently in control of the requested hardware
device from the operating system or other system reference
list, and can then go to the controlling application and access
the device through the published API, as in step 34 of
method 30.

As will be discussed further below, the first application
can be implemented as a server daemon that runs with
enhanced system privileges, which establishes the device
API and then sits idle and provides data stream access to any
and all user level applications that require the data stream
under control of the server daemon. The server daemon can
optionally be implemented as part of an operating system
installation package, and be run upon operating system
startup and initialization. The server daemon can also be
monitored by the operating system, and relaunched if a crash
or error is detected to ensure relatively continuous and
seamless access to the controlled hardware data stream.
Such an implementation has the advantage of keeping the
device continually initialized and ready to access, and also
can provide enhanced system security and integrity by
keeping the API and device data stream walled off to a
known system-level service. Thus, user applications imple-
mented by third parties are not required to implement the
API, preventing the possibility of inconsistent API imple-
mentations, the possibility of the introduction of bugs
depending on the application supplying the API, and/or
inconsistent device and application behavior depending on
the set of applications accessing the device and the order of
application launch. However, such a method of implemen-
tation does potentially consume more system resources than
having each individual application provide the APIL as a
server daemon will consume its own application resources
and impose system overhead (albeit minimal) if kept in a
waiting state Implementing the API at a user application
level can potentially save system resources, which may be
desirable in some mobile device implementations where
system resources and processing power are limited, and
acceptable system performance can only be achieved by
keeping the running set of applications and services to a
minimum. In such a case, the tradeoff between system
stability and system performance may dictate user-level
application implementation of the API

For step 32, the application either requests that the oper-
ating system initialize the hardware device via a device
driver or other service, or, depending on the implementing
platform and hardware, the application may handle initial-
ization directly. Initialization steps may include changing
the device’s power state (e.g. from sleep to wake), obtaining
information about device capabilities, running any diagnos-
tics and/or self-tests, allocating any supporting system
resources, such as memory blocks, buffers, I/O) ports,
system interrupts, etc., and beginning to receive the device
data stream. Actual initialization steps will depend upon the
hardware device being utilized. In the example implemen-
tation where the hardware device is a camera, initialization

US 12,159,173 B2

9

steps may include receiving camera information such as
camera resolution, pixel aspect ratio, frame rate, compres-
sion type (if compression is implemented in camera hard-
ware), data rate, image format, and color space.

In step 33, the application publishes and advertises the
API for the device, enabling access to the device to any other
application by way of calls to the API. The API ideally
makes available at least a minimal set of device features
necessary for other applications to utilize basic device
functionality. Such minimal sets may conform to accepted
industry standards for particular types of devices, e.g.
TWAIN for scanners, USB specifications for I/O and mass
storage. For the example implementation using a camera,
API capabilities may include the ability to tell a requesting
application about camera information such as the pixel
format, image size, and frame rate (if the data stream is a
video format), the ability to notify the requesting application
of changes to those parameters mid-stream, provisions for
receiving the data stream from the camera consistent with
the camera parameters specified by the API, and providing
a time stamp of the image or video capture. The API can also
optionally provide means to request changes to camera
specifications if supported; for example, requesting a change
in camera resolution or field of view.

Finally, in step 34 a second application uses this API to
access the hardware and the associated data stream via the
first application Provided it is supported by the APL this
access may include requests for changes to the device state
or controls. The first application responds to API calls and
requests as appropriate. If the API supports controlling or
changing the device state, the first application may need to
arbitrate such requests depending on the first application’s
device data stream needs, and whether those needs conflict
with any other requesting application needs. For example,
with a camera device, if resolution or frame rate changes are
supported and the first application controlling the camera
requires a specific resolution and frame rate, it may be
required to accommodate a different requested frame rate or
resolution or notify the second requesting application of the
unavailability of the requested frame rate or resolution.

Considering FIG. 3B, an example system 300 that imple-
ments method 30 is depicted. System 300 is comprised of a
camera 301 recognized and in communication with an
operating system 302. First Application 303 performs the
first application functions as detailed in the above descrip-
tion of method 30, including the provisioning of the API
304, which is then accessed by one or more second appli-
cations, depicted in FIG. 3B as apps 305, apps 2 through N.
Turning attention to FIG. 4, a second example of a system
40 implementing a variant on method 30 above will now be
described. System 40 includes many similar or identical
features to a system implementing method 30. Thus, for the
sake of brevity, each feature of system 40 will not be
redundantly explained Rather, key distinctions between sys-
tem 40 and method 30 will be described in detail and the
reader should reference the discussion above for features
substantially similar between the two implementing sys-
tems.

As can be seen in FIG. 4, system 40 includes a camera 41,
which is recognized by an operating system 42. A control
process 43 is in communication with camera 41 via oper-
ating system 42. Control process 43 provides an API 44,
which in turn is accessed by one or more apps 45 that need
access to the data stream of camera 41.

In the example system 40, control process 43 is an
application that performs the steps that the first application
described above in connection with method 30 performs,

10

15

20

25

30

35

40

45

50

55

60

65

10

namely, obtaining control of the camera 41, performing
initialization and data stream management, and API adver-
tising and publishing, described above as steps 31-33. In this
implementation, control process 43 is a server daemon as
described above; control process 43’s sole function is the
control and management of the camera, and acting as the
provider of the API 44 to apps that require access to the data
stream of camera 41. In this sense, it differs from the first
application 303 depicted in FIG. 3B insofar as control
process 43 does not have any functionality unrelated to
providing API 44, e.g. it does not act separately on the
camera data stream to perform functions such as providing
an augmented reality overlay or handling gesture recogni-
tion. It will be appreciated by a person having skill in the
relevant art that the functionality of control process 43 may,
in some implementations, be performed by operating system
42, which may obviate the need for control process 43 to be
implemented as a separately running process.

Considering FIG. 5, an example implementation of a
system where the operating system either does not act as a
hardware arbitrator (e.g. similar to implementations of MS-
DOS, where applications could freely access hardware
directly), the operating system acts as the first application to
provide the API, or allows applications to directly talk to
device drivers, is depicted. FIG. 5 also demonstrates the data
flow from device to application once one of the disclosed
methods has been initiated. System 500 is comprised of
camera 510, which is optionally part of computer 520, as
might be found in a mobile device 200. Data stream 530 is
supplied to first application 540, which in turn provides data
steam 530 via the API 550. Second and subsequent pro-
cesses 560 can in turn access data stream or copies of data
stream 570 via API 550.

FIGS. 6A and 6B depict methods by which first applica-
tion 540 and API 550 can provide access to data stream 530
to multiple applications Due to the nature of multiprocessing
systems, multiple applications may not be executing simul-
taneously, or may not be processing at the same speed.
Accordingly, data stream access will not typically be syn-
chronized between accessing applications, and each appli-
cation will need sequential data stream access to ensure
correct processing. In both figures, camera 510 writes its
data stream into a primary buffer 610. FIG. 6A shows a
possible implementation where first application 540 makes
primary buffer 610 directly accessible via API 550 to all
applications utilizing the data stream. First application 540
and subsequent processes 560 are all depicted accessing
primary buffer 610. First application 540 and subsequent
processes 560 may each be using a slightly different portion
of the data stream provided in primary buffer 610. In this
implementation, API 550 keeps track of the position in the
data stream in primary buffer 610 for each respective access-
ing subsequent process 560, and returns data from primary
buffer 610 appropriate to the current data stream location
associated with each subsequent process 560. By using a
single shared primary buffer 610, memory space is con-
served. However, if integrity of the data stream is to be
maintained, only camera 510 can be permitted to write to
primary buffer 610; first application 540 and subsequent
processes 560 may only read from primary buffer 610.
Processing of the data stream that requires writing will
necessitate that a copy of the processed data be made from
primary buffer 610.

FIG. 6B shows an alternative variation for buffering the
data stream between multiple applications. In FIG. 6B, each
subsequent process 560 is accorded its own copy of primary
buffer 620. Each time a new subsequent process 560 calls

US 12,159,173 B2

11

API 550 and requests access to camera 510, API 550 (and/or
first application 540) creates a new copy of primary buffer
620, and directs camera 510 to write a copy of the data
stream to each of primary buffer 610 and copy of primary
buffer 620. As each of first application 540 and subsequent
processes 560 looks to its own copy of the data stream, each
of'the primary buffer 610 and copy of primary buffer 620 can
be read and written to by its associated process.

It will be appreciated by a person skilled in the relevant
art that primary buffer 610 and each copy of primary buffer
620 can be filled either directly by camera 510, if the
hardware and device drivers permit architecture such as
Direct Memory Access, or by the operating system, or by
first application 540 as part of implementing API 550. Each
of primary buffer 610 and copy of primary buffer 620 can be
implemented as a linear buffer that is sequentially filled by
the data stream, or a circular buffer, where a fixed segment
of memory is successively overwritten by the data stream as
it repeatedly reaches the end of the fixed segment of
memory, or any other method of hardware buffer implemen-
tation now known or later developed in the art. Each of these
methods has its advantages and disadvantages: a linear
buffer, while allowing access to a growing history of the data
stream (useful for scrolling back through video or doing
replays, or for performing change analysis of the current
state of the data stream relative to its previous condition), is
also potentially very memory intensive and, practically
speaking, eventually reaches system capacity limits. A cir-
cular buffer, in contrast, is memory-efficient, but is limited
in its ability to support analysis of the current data stream
vis-a-vis historical data. Yet another implementation method
may involve something of a hybrid; a flexibly sized buffer
can be provided, where the start of the buffer is marked
where the hardware is writing the data stream, and the end
is where the accessing application is currently reading. As
the accessing application reads the data stream, it is deleted,
and the space freed up for the hardware to write incoming
data. Such an implementation could run into capacity limi-
tations if the reading application fails to keep up with the
speed at which the hardware writes the data stream to the
buffer.

It will also be appreciated that each application can, if
necessary, copy data from primary buffer 610 or copy of
primary buffer 620 to its own respective memory space to
provide for historical data retention, especially where pri-
mary buffer 610 and copies of primary buffer 620 are
implemented as circular buffers.

The disclosure above encompasses multiple distinct
inventions with independent utility. While each of these
inventions has been disclosed in a particular form, the
specific embodiments disclosed and illustrated above are not
to be considered in a limiting sense as numerous variations
are possible. The subject matter of the inventions includes
all novel and non-obvious combinations and subcombina-
tions of the various elements, features, functions and/or
properties disclosed above and inherent to those skilled in
the art pertaining to such inventions. Where the disclosure or
subsequently filed claims recite “a” element. “a first” ele-
ment, or any such equivalent term, the disclosure or claims
should be understood to incorporate one or more such
elements, neither requiring nor excluding two or more such
elements.

Applicant(s) reserves the right to submit claims directed
to combinations and subcombinations of the disclosed
inventions that are believed to be novel and non-obvious.
Inventions embodied in other combinations and subcombi-
nations of features, functions, elements and/or properties

10

15

20

25

30

35

40

45

50

55

60

65

12

may be claimed through amendment of those claims or
presentation of new claims in the present application or in a
related application. Such amended or new claims, whether
they are directed to the same invention or a different
invention and whether they are different, broader, narrower
or equal in scope to the original claims, are to be considered
within the subject matter of the inventions described herein.
The invention claimed is:
1. A method comprising:
initializing, by a first application, a camera that generates
an image stream that includes a plurality of images;
establishing, by the first application, exclusive control of
the camera, wherein:
the exclusive control of the camera comprises control-
ling settings of the camera; and
a second application cannot control the settings of the
camera;
in response to receiving a request to access the image
stream of the camera, initiating the first application;
receiving, from the camera, the image stream at the first
application;
establishing, by the first application, an application pro-
gramming interface (API);
advertising, by the first application, the API;
receiving, at the API, a request from the second applica-
tion to access the image stream;
sending, by the API, the image stream to the first appli-
cation and the second application, wherein:
the image stream is a single image stream received
from the camera; and
the image stream is the single image stream provided to
both the first application and the second application
at the same point in time;
analyzing, by the first application, the image stream to
determine gesture information from a user;
analyzing, by the second application, the image stream to
generate an augmented reality object to overlay onto
the image stream;
executing, by the first application, an instruction based on
the gesture information;
overlaying, by the second application, the augmented
reality object onto the image stream; and
in response to no further applications accessing the image
stream, terminating the first application.
2. The method of claim 1, wherein the first application is
a server daemon.
3. The method of claim 1, wherein the first application is
a user application.
4. The method of claim 1, wherein initializing the camera
further comprises:
querying the camera to determine capabilities and char-
acteristics of the camera; and
initiating the image stream.
5. The method of claim 1, further comprising:
receiving, at the first application, another request from the
second application to change a first setting of the
camera;
determining, by the first application, whether the other
request conflicts with a second setting required by the
first application;
in response to the other request not conflicting with the
second setting required by the first application, chang-
ing the first setting of the camera as indicated in the
other request; and
in response to the other request conflicting with the
second setting required by the first application, main-
taining the second setting of the camera.

US 12,159,173 B2

13

6. A system, comprising:

a data storage device to store instructions;

a processor coupled to the data storage device, the pro-

cessor operable to execute the instructions; and

a camera coupled to the processor, the camera to generate

an image stream, where in the processor is to:
establish a first application with exclusive control of the
camera, wherein:
the exclusive control of the camera comprise con-
trolling the settings of the camera; and
a second application cannot control the settings of
the camera;
in response to receiving a request to access the image
stream of the camera, initiate the first application;
receive, at the first application, the image stream from
the camera;
establish, by the first application, an application pro-
gramming interface (API);
advertise, by the first application, the API;
receive, at the API, a request from the second applica-
tion to access the image stream;
send, by the APL the image stream to the first appli-
cation and the second application, wherein:
the image stream is a single image stream received
from the camera; and
the image stream is the single image stream provided
to both the first application and the second appli-
cation at the same point in time;
analyze, by the first application, the image stream to
determine gesture information from a user;
analyze, by the second application, the image stream to
generate an augmented reality object to overlay onto
the image stream;
execute, by the first application, an instruction based on
the gesture information;
overlay, by the second application, the augmented
reality object onto the image stream; and
in response to no further applications accessing the
image stream, terminate the first application.

7. The system of claim 6, wherein the processor is further
to: initialize the camera in response to receiving the request
from the first application access the camera.

8. The system of claim 6, wherein the processor is further
to initialize the API in response to the initializing the
camera, wherein the API is a server daemon.

9. The system of claim 6, wherein the processor is further
to write the image stream into a buffer.

10. The system of claim 6, wherein the processor is
further to write the image stream into a buffer, wherein the
buffer is a circular buffer.

11. The system of claim 6, wherein the processor is to:

receive, at the first application, another request from the

second application to change a first setting of the
camera;

determine, by the first application, whether the other

request conflicts with a second setting required by the
first application;

in response to the other request not conflicting with the

second setting required by the first application, change
the first setting of the camera as indicated in the other
request; and

in response to the other request conflicting with the

second setting required by the first application, main-
tain the first setting of the camera.

10

25

30

35

40

45

50

14

12. A non-transitory computer-readable storage medium
to store a set of instructions that when executed by a
processor, cause the processor to:

initialize a hardware device;

receive a data stream from the hardware device;

establish a first application with exclusive control of the

hardware device, wherein:

the exclusive control of the hardware device comprises
controlling the settings of the hardware device; and

a second application cannot control the settings of the
hardware device;

in response to receiving the request to access the image

stream of the camera, initiating the first application;
receive the data stream at the first application;

establish an application programming interface (API);

advertise the API to the second application;

receive a request from the second application to access the

data stream;

send the data stream to the second application, wherein:

the data stream is a single data stream received from the
hardware device; and

the data stream is the single data stream provided to
both the first application and the second application
at the same point in time;

analyze, by the first application, the data stream to deter-

mine gesture information from a user;

analyze, by the second application, the data stream to

generate an augmented reality object to integrate into
the data stream,;

execute, by the first application, an instruction of the set

of instructions based on the gesture information;
integrate, by the second application, the augmented reality
object into the data stream; and

in response to no further applications accessing the image

stream, terminate the first application.

13. The non-transitory computer-readable storage
medium of claim 12, wherein the processor is further to:

receive the data stream from the hardware device; and

store the data stream into a first buffer that is accessible by
the first application and the second application.

14. The non-transitory computer-readable storage
medium of claim 13, wherein the processor is further to copy
the data stream from the first buffer to a second buffer,
wherein the first buffer is accessible by the first application
and the second buffer is accessible by the second applica-
tion.

15. The non-transitory computer-readable storage
medium of claim 12, wherein the processor is further to:

receive, at the first application, another request from the

second application to change a first setting of the
hardware device;

determine, by the first application, whether the other

request conflicts with a second setting required by the
first application;

in response to the other request not conflicting with the

second setting required by the first application, change
the setting of the hardware device as indicated in the
other request; and

in response to the other request conflicting with the

second setting required by the first application, main-
tain the first setting of the hardware device.

#* #* #* #* #*

